Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations.
نویسندگان
چکیده
Use of pyrethroid pesticides, which are highly toxic to aquatic organisms, has increased substantially over the past decade. In 2006, the pyrethroid pesticides cyfluthrin and permethrin were measured in Sacramento-San Joaquin (SSJ) Delta (CA, USA) water at 5 and 24 ng/L (pptr), respectively. To elucidate any interactions between the two pyrethroids, a 10-d laboratory exposure was performed with 7- to 14-d-old amphipods (Hyalella azteca). Cyfluthrin and permethrin were tested singly and in combination at detected levels and also at half and twice the detected levels, both with and without the addition of 25 ppb of piperonyl butoxide (PBO). Mortality in all treatments was significantly higher than in controls, with the median lethal concentration (LC50) for permethrin with PBO (13.9 ng/L) and the LC50s with and without PBO for cyfluthrin (5.7 and 2.9 ng/L, respectively) at or below levels measured in SSJ Delta water samples. The LC50 for permethrin alone was estimated to be 48.9 ng/L. To evaluate combined toxicity, logistic regression models containing terms for concentrations of cyfluthrin, permethrin, and PBO, as well as models containing all possible combinations of these terms and interactions, were run and compared using Akaike's information criterion. The most parsimonious set of models indicated slight antagonism between cyfluthrin and permethrin. Results indicate that a dissolved mixture of cyfluthrin and permethrin is toxic at environmentally relevant concentrations in the water column.
منابع مشابه
Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca.
Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test contain...
متن کاملMonitoring acute and chronic water column toxicity in the Northern Sacramento-San Joaquin Estuary, California, USA, using the euryhaline amphipod, Hyalella azteca: 2006 to 2007.
After the significant population decline of several pelagic fish species in the Northern Sacramento-San Joaquin (SSJ) Estuary (CA, USA) in 2002, a study was performed to monitor water column toxicity using the amphipod Hyalella azteca. From January 1, 2006 to December 31, 2007, water samples were collected biweekly from 15 to 16 sites located in large delta channels and main-stem rivers, select...
متن کاملExposure-related effects on Cd bioaccumulation explain toxicity of Cd-phenanthrene mixtures in Hyalella azteca.
Little is known regarding mixture effects of metals and polynuclear aromatic hydrocarbon (PAHs) under environmentally relevant exposure regimes. Standard U.S. Environmental Protection Agency (U.S. EPA) procedures were applied and extended to test effects of phenanthrene (Phen) on sediment-Cd uptake, aqueous-Cd uptake, and Cd-elimination kinetics in the amphipod Hyalella azteca. In sediment expo...
متن کاملPesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California, 2007-2008.
The California's San Joaquin River and its tributaries including Orestimba (ORC) and Del Puerto (DPC) Creeks are listed on the 2006 US EPA Clean Water Act §303(d) list for pesticide impairment. From December 2007 through June 2008, water and sediment samples were collected from both creeks in Stanislaus County to determine concentrations of organophosphorus (OP) and pyrethroid insecticides and ...
متن کاملChronic toxicity of azoxystrobin to freshwater amphipods, midges, cladocerans, and mussels in water-only exposures.
Understanding the effects of fungicides on nontarget organisms at realistic concentrations and exposure durations is vital for determining potential impacts on aquatic ecosystems. Environmental concentrations of the fungicide azoxystrobin have been reported up to 4.6 μg/L in the United States and 30 μg/L in Europe. The objective of the present study was to evaluate the chronic toxicity of azoxy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2009